

Mine Hydrogen Power: Avancements, needs

Presentation to the Hydrogen Mine Power Seminar

Marc Bétournay CanmetMINING

Canada

Natural Resources Ressources naturelles Canada

May 22nd, 2019

Drivers for Cleaner Energy Application

Important Considerations for the Mining Industry

- Workplace health
 - New generation of diesel engines to meet cleaner air requirements (EPA Tier 4)
 - Considerations related to the 2012 WHO underground diesel power use health warning
 - Sought: alternative energy to eliminate all emissions, viable operational replacement
 - In some cases, e.g., fuel cells, significant reduction in noise generation, vehicle heat load in deep mines
- Rising oil prices
 - Replacing diesel
- Economic opportunity for the industry through cost reductions
 - Reducing required ventilation
 - Diesel equipment, maintenance, downtime, automation vs electric motor lower maintenance costs, higher reliability
 - Less loss-time due to diesel-related health issues
 - Automation, tele-remote operation improved
- Keeping pace with surface vehicle clean energy drive
- Clean Energy Changing climatic conditions
 - GHG reduction

Hydrogen Mine Power Implementation 2000-2019

Historical Developments

- Fuel cells work in underground environments
- Hydrogen leaks from infrastructure is very small, only man-made accidents represent worse leak cases
- Hydrogen behaves underground as per theory
- 25-50% savings on ventilation (\$500k-\$1.5M/year)
- 25% less GHGs
- Mine production locomotive assembled, tested in mines
- Mine production loader assembled, tested in mine

Hydrogen Distribution System Test Chamber Tests

Current Developments

BNO

- Design completed: standard on-site hydrogen production, storage and distribution (average mine, 1,200 kg/day, all mine vehicles)
- Design completed: refueling installation underground
- Risk potential and evaluation methodology
- Risk reduction through engineering and administrative action (e.g. safety shut-down with sensors; 3 sec hydrogen release max.; protection of pipeline; electric equipment zoning, spark-free fans, protocols)
- Codes and standards exist for infrastructure components
- Towards CHIC for mines

Risk is based on the two events

- Leak occurring
- Spark

Examples, sources of sparking that commonly occur underground

- Contacts
- Electric motors
- Welding
- Diesel engines

Credible leaks from infrastructure

• 90-96% of all leaks

Canada

- < 0.1-0.2 mm wide
- 0.03%-0.1% of pipe cross-sectional area
- Worst case scenario will be man-made

The ignition source must have sufficient energy, duration and position in the leak cloud concentration

Try to remove some ignition sources, prevent man-made leaks

Mining Context

- Mine hydrogen installations require supplementary considerations for an installation code
 - Stringent mining regulations for safety in confined spaces
 - Underground atmosphere conditions (mineral dust mostly corrosive, dampness, diesel emission gases)
 - Presence of other vehicle power systems that can represent source of ignition risks (diesel ICE, lithium ion batteries)
 - Shock and vibration and impacts imposed to fuel cell vehicles
 - Stability of the underground rock mass periphery

CHIC for Mining

- For surface and underground, compliance with the jurisdiction's mine regulations adds additional considerations driven by risk and safety
- Requirements for surface installation in general follows the CHIC
- Underground distribution pipeline, dispenser, dispensing stations and surrounding areas will follow the CHIC and additions given the enclosed, mining operation context
- Main examples of underground considerations:
 - Spark free equipment and ignition avoidance
 - Protection of equipment from mining vehicles, mine fires and falls of rock
 - Placement and design of dispensing stations and ventilation
 - Underground and surface emergency shut-down
 - Marking of underground equipment and of mine accessways
 - Dispensing station and surrounding entrance protocols
 - Sensors for mine conditions

ᠫᠠᡄᢛ᠂ᡏᢂᡄᢋᢛᡆᢂ᠐ᡕ

Future Developments

- CanmetMINING will participate in writing the new CSA M424
- Completion of the CHIC for mines
- Risk analysis for fuel cell vehicles and leaks located in hazardous mine areas
- Mine project support
- Mine regulations development support

Questions?

Natural Resources Ressources naturelles Canada Canada

